

MODULE ONE: INTRO TO THE INDUSTRY

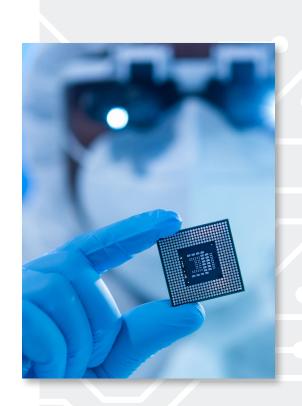
Overview of the semiconductor industry and helpful terminology

What is the semiconductor industry— and why does it matter?

According to the SEMI Foundation, microelectronic devices are in almost everything we use in our modern lives. A central part of the microelectronics industry is the production of semiconductors, which are used to make microchips that you can hold in the palm of your hand. The advancement of semiconductor technologies and production will help fuel America's future economic growth in artificial intelligence, machine learning, autonomous driving, cloud and edge computing, high-performance computing, 5G, smartphones, and more.

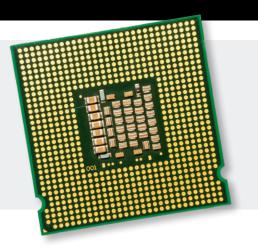
This industry is a place where you can make the world better by working with cutting-edge technology. Your skills and creativity will help shape tomorrow. Whether you work in manufacturing, programming, marketing, or human resources, you'll be part of making technology that will contribute to powering our world.

A career in this industry will give you opportunities to expand your knowledge of this technology, learn new skills, apply your talents and find a path that fits you.


SEMI FOUNDATION

Why should you explore career paths in the world of semiconductors?

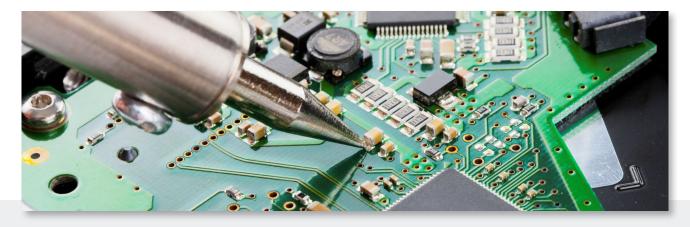
- **Growing demand:** With recent key investments from JPMorgan Chase and the National Science Foundation, Osceola County is becoming the semiconductor workforce hub for the nation.
- **High-paying:** Salaries range from \$42K to \$100K+ per year, depending on the role.
- **Diverse opportunities:** These aren't just tech jobs! Roles in the semiconductor industry range from engineering and manufacturing to contract management, marketing, and design.
- **Innovative work:** Cutting-edge projects mean your role could help shape the future of technology.


Get a sneak peek of the industry

Watch the "Chip In" trailer to get a sneak peek at the microelectronics industry—and the video content we'll be exploring throughout this guide.

HELPFUL TERMINOLOGY

Chip/Microchip: Self-contained piece (usually square) including the semiconductor surface and integrated circuit, independently packaged for use in electronics such as cellphones or computers



Cleaning: Dry and wet cleaning work involves using chemical solutions or gases to successfully remove dust, metal ions, and organic impurities from chips

Fab: Industrial facility where raw silicon wafers become fully functioning electronic chips

Integrated circuit (IC): Many transistors (anywhere from several to billions) combined to make a small circuit on a chip

Lithography: Process of etching into or building onto the surface of a wafer in order to produce patterns of integrated circuits

Microelectronics: The study and manufacturing of very small electronic designs and components, typically made from semiconductor materials

Semiconductor: Material, such as silicon or germanium, that can act either as a conductor or an insulator of electricity, depending on small changes in voltage

Silicon: Semiconductor material that serves as the basis for many circuits

Solder: Mixture of metals (such as lead and tin) that is melted and used to join parts together

Supply chain: The series of manufacturers, distributors, shippers, etc., involved in producing microelectronics and bringing them to market

Testing: The process by which each chip is tested on the wafer—bad chips are marked for elimination while the good ones are sliced out, placed into packages and connected by tiny wires or solder balls

Transistor: Simple switch, made with a semiconductor material, that turns on or off depending on changes in voltage and can combine with other transistors to create complex devices

Wafer: Thin circular piece of semiconductor material (such as silicon) used as the base for building multiple integrated circuits

Semiconductor: Material, such as silicon or germanium, that can act either as a conductor or an insulator of electricity, depending on small changes in voltage

NOTE:

Throughout this guide, we will use the terms "semiconductor industry" and "microelectronics industry" interchangeably. You may also see this industry referred to as the "microchips industry" in the news and media. Different industry leaders and companies use different words to describe this workforce, but we're essentially all talking about the same sorts of career paths and job opportunities!

ADDITIONAL RESOURCES

Want to take a deep dive into the semiconductor manufacturing process? Watch this animated YouTube video to see how chips get made! https://youtu.be/Bu52CE55BN0?si=3NZ_jOZS3JVz5vz4

MODULE TWO:

"CHIP IN" DOCUMENTARY + VIEWING GUIDE

A deeper dive into possibilities in the semiconductor industry—through the eyes of young adults like you

About Roadtrip Nation

For over 20 years, we here at Roadtrip Nation have made it our mission to help individuals pursue fulfilling careers aligned with their interests and strengths. We show people how to turn the things they like into careers they love—and we do it with the most powerful of tools: personal stories. From snowboard designers to astrobiologists, we've sat down with professionals of all kinds and asked them honest questions about their struggles, successes, and their answers to the age-old question: "What should I do with my life?" These conversations form the foundation of our documentaries—like "Chip In"—which introduce people to new paths and illustrate how to pursue them.

About <u>"Chip In"</u>

Whether or not you realize it, microchips are everywhere! From 3D printing to everyday transportation to gaming, these tiny pieces of hardware pack a lot of power—and they're creating a growing industry that has opportunity to offer for all.

"Chip In" is a documentary series fueled by the SEMI Foundation that follows three young people eager to explore the world of semiconductors, as they take a road trip across the country to discover career opportunities in one of technology's most exciting sectors.

Join the journey as roadtrippers Alyssa, Marcus, and Tara travel throughout the country to hear from inspiring professionals who are using microelectronics to build a smarter global infrastructure in all sorts of different ways.

As you watch their road trip, you'll discover how microchips both shape the present, and help us build the future—and you'll see where you can make a difference in the semiconductor industry, too!

See you on the road!

How to use the "Chip In" viewing guide

The "Chip In" viewing guide is designed to be used during and after viewing the "Chip In" documentary, in order to spark meaningful conversations about future aspirations and how to achieve them.

This viewing guide is split into two sections, aligning with each episode of the two-episode documentary series; however, the documentary may be watched in smaller segments if needed.

Here's how to use this guide:

REFLECT

Before watching each episode of the two-episode documentary series, visit the REFLECT section and answer the questions. These personal reflections will help set you up to watch the documentary content.

Student response time: 15 - 30 minutes

WATCH

While viewing each episode, use the WATCH section to jot down your thoughts or favorite quotes from the episode.

Total running time: 50 minutes

TALK & CONNECT

After watching, read the TALK & CONNECT section and discuss topics that arise.

Write down your thoughts first, then share through conversation. Discussions can take place in small groups with peers, or with your instructor.

We encourage all learners to discuss any insights, ideas, or questions that arose during the viewing of the documentary.

Student written response time: 30 - 60 minutes

Optional discussion time: 30 - 60 minutes

Meet the Roadtrippers

Alyssa

Alyssa recently graduated with honors earning a bachelor's degree in computer science and a minor in mathematics. Currently, she is working as a software engineer in the defense field. She's unsure about what career fields she wants to explore in the future, but the world of microelectronics feels like it's beckoning to her. She's particularly interested in the security side of microelectronics, including their software vulnerabilities and applications for hacking. She also has a strong desire to go back to school for her Ph.D. someday. She hopes to increase the representation of women in the tech industry and the STEM side of academia.

Marcus

A recent graduate of the Per Scholas workforce training program, Marcus lights up whenever he works with technology. He loves to build PCs from scratch and is currently pursuing his A+ certification from CompTIA. One day, he would love to have the sort of job where he could support his mom so she doesn't have to work anymore. Right now, he's very eager to explore a future in the world of microelectronics. He knows he's more interested in the mechanical aspect of tech than the theoretical and mathematical side, so he's hoping he can find a way to work with semiconductor chips that speaks to this more hands-on approach.

Tara

Tara wants to help bring the world boldly into the future. She's currently pursuing graduate degrees in energy and earth resources as well as public affairs. Her hope is to have a career that has a positive impact on the environment. She's excited about how the microelectronics industry could potentially carve out ways to restore soil health, promote climate-smart agriculture, contribute to reforestation, and increase food security. She views semiconductors as the backbone of a technological and sustainable society, and she can't wait to meet the people who help build them.

EPISODE 1

"Leading Edge"

REFLECT

Before watching the first episode of "Chip In," reflect on the following questions, and write down your answers:

- **1.** What career and/or personal goals do you have for the future? Do you have plans for how you might reach those goals? What are your plans?
- 2. What are some self-doubts or hesitations you have about your future career path?
- 3. What inspired you to start learning about the microelectronics industry?
- **4.** What are some questions you still have about the microelectronics industry?

	WATCH
_	As you watch the episode "Leading Edge," jot down your thoughts or favorite quotes:

TALK & CONNECT

1. \	Which r	roadtripper	do v	ou feel	like you	ı can ı	relate t	o the	most?	Why	/?
------	---------	-------------	------	---------	----------	---------	----------	-------	-------	-----	----

- **2.** Did any of the roadtrippers or leaders interviewed face hurdles, challenges, or questions similar to your own? How did they overcome them?
- **3.** The roadtrippers ask NVIDIA software engineer Jessica Heerboth about her decision-making process for picking her job path. What factors do they discuss? In general, what factors are important to consider when choosing a career path?

- **4.** Which of these leaders had the most interesting career path, in your opinion? Why do you think you're drawn to their career? Do you have any skills or interests that align with their path?
 - a. Jessica Heerboth, Software Engineer, Nvidia
 - **b.** A.J. Rivero, Systems Integration Engineer, Torc Robotics
 - **c.** Laura Marmolejo, Associate Dean of Advanced Manufacturing Programs, Austin Community College

"If you're going to do something, do it with intent."

A.J. RiveroSystems Integration Engineer, Torc Robotics

TALK & CONNECT

5. Laura Marmolejo mentions that an internship helped spark her interest in this industry—and roadtripper Marcus found his path after doing a three-month bootcamp. Meanwhile, Jessica Heerboth and A.J Rivero got into the industry after earning their bachelor's degrees. There are so many different ways to get into the microelectronics industry—have you thought about what kind of path you want to take into your career? What factors are you considering when you start to plan out your educational path? (Price, time commitment, etc.)

6. If you had the opportunity to interview someone in the semiconductor industry, what would you ask them? What would you want to learn from them?

REFLECT

Before watching the second episode of "Chip In," reflect on the following questions, and write down your answers:

- 1. How do you picture your life 10-20 years in the future? What sacrifices do you think you may need to make to achieve your career and education aspirations?
- 2. When you tell people your hopes or goals for the future, do you ever hear any negative feedback, or "noise"? How do you decide when to listen to people's feedback, and when to follow your heart?
- 3. What is most important to you when you think about your future career? Do you want to be happy, or make lots of money, or do work that feels fulfilling? Do you want to work extra hard and feel like you've accomplished something, or are you more interested in finding work-life balance? What other core values or traits are you looking for in your future career?

	WATCH
_	As you watch the episode "Making Micro," jot down your thoughts or favorite quotes:

TALK & CONNECT

1. In the beginning of this episode, the roadtrippers tour ASML's clean room, and get to see the microchip manufacturing process. How did you feel when you saw the work environment in the clean room? Do you think you'd like to work in an environment like that? Why or why not?

2. Many of the leaders in this episode talk about imposter syndrome or underrepresentation in their field; have you ever experienced anything similar? How did you get through it? Why do you think it's important to have different voices and perspectives in the semiconductor industry?

- **3.** Which of these leaders had the most interesting career path, in your opinion? Why do you think you're drawn to their career? Do you have any skills or interests that align with their path?
 - a. Laura Angell, Group Lead for Quality and Continuous Improvement, ASML
 - b. Naeiri Cholakian, Director of Product Engineering, Syntiant
 - c. Ron Duncan, Senior Manager of Corporate Applications Engineering, Synopsys
 - d. Billy Rios, Co-Founder, QED Secure Solutions

"To do things out of your comfort zone that's where there's the potential to find the better version of you."

Naeiri Cholakian
Director of Product Engineering, Syntiant

TALK & CONNECT

4. Roadtripper Tara is extra interested in helping the environment—can you think of some ways that the microchip industry could help her achieve that? What are some of **your** interests outside of technology? How could those interests intersect with microelectronics? (Ex: If you love soccer, can you think of a career path where microelectronics and soccer would intersect? Get creative! It doesn't have to be a job that exists...yet!)

5. At the end of the journey, the roadtrippers realize they still have questions about their future, and that's OK! How do you deal with unknowns in your own life? How could you apply those learnings to your future career—for example, in an evolving industry like microelectronics?

6. Overall, what did this documentary teach you about the opportunities available within the semiconductor industry? What was the most surprising or interesting insight you took away from these episodes?

ADDITIONAL RESOURCES

If you're curious about even **more** career possibilities in the semiconductor industry, visit the SEMI Foundation's Career Explorer: https://careers.semi.org/career-explorer

You'll see career options in engineering, installation, maintenance & repair, business management & operations, information technology, manufacturing & production, marketing & public relations, and sales—so you can find the job that best aligns with your unique interests!

MODULE THREE:

WHERE CAN YOUR ROAD **TAKE YOU?**

Follow the road from an associate degree, all the way up to a doctorate, and see what kinds of semiconductor-industry careers are possible along the way

Here at Roadtrip Nation, we've talked to hundreds of people from all different kinds of careers—and the one thing that's become perfectly clear is that there are more possible paths out there than you realize! And in any given career or industry, there are always multiple ways to get your foot in the door.

But no matter which career feels right to you, you'll have to start out with training and education.

In the semiconductor industry, there are careers that require some training beyond high school, and careers that require advanced degrees. Let's take a look at some examples.

WATCH

Watch each video below, highlighting five different leaders from the semiconductor industry.

Each of them has a different level of education and training, and each of them took a unique path to reach their current career:

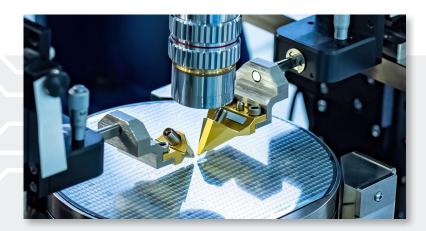
- 1. High school & certifications: <u>Katy Crist</u>, <u>Director of Marketing and Communications</u>, <u>Tokyo</u> **Electron Limited**
- 2. Associate degree: Dean Barre, Calibration Technician, Samsung
- 3. Bachelor's degree: Jessica Heerboth, Software Engineer, Nvidia
- 4. Master's degree: Naeiri Cholakian, Director of Product Engineer, Syntiant
- 5. Doctorate: Mercedes Hernandez, Staff Development Engineer, Qorvo

REFLECT

Do some reflecting on your career goals and values, then use the table below to jot down some pros and some cons to each educational path, for you, personally.

Some factors you may want to consider: Time investment, money spent, earning potential, long-term career opportunities, mental health, school-life balance, etc.

Education Path	Pros	Cons
High School + Certifications		
Associate Degree		
Bachelor's Degree		
Master's Degree		
Doctorate		



TAKE IT FURTHER

Now that you've explored some careers in the semiconductor space and seen some different education and training options, you're ready to find real opportunities to get your path started.

- 1. Identify a career you're interested in. If you're still unsure, visit the SEMI Foundation's <u>Career Explorer</u> tool to research more career options.
- 2. Match it to an education/training path. Use the internet to find real, local education and training options that could help you reach that career goal. If you're having difficulty finding local education and training options, talk to your facilitator!
- 3. Complete your mission statement. Use the "mad lib" below to make a definitive statement about your future. You don't have to stick to your mission statement if your interests and goals change throughout this course, but sometimes writing down or saying your plan aloud can help you get motivated!

I'm interested in becoming a					
S	(insert career name)				
To reach that goal, I'll need to					
3 .					
(insert education and tro	aining needed)				
I can get that education and trai	ning at				
8	8				
(insert local school/work	force program)				

MODULE FOUR: START YOUR ECONOMIC **ENGINE**

Skills to help you succeed in the microconductor industry

Your Economic Engine

Every career takes a specific set of skills—and careers in the semiconductor industry are no different.

But while you can learn "hard skills" like soldering or dry cleaning on the job, you can also start building up some of your "soft skills" right now!

Soft skills are the kinds of skills that will help you succeed in any career—so no matter which area of the semiconductor industry you're interested in, there is a similar set of skills that you can start building now, even if you're not quite sure which job is right for you.

WATCH & REFLECT

Watch leaders throughout the semiconductor industry talk about the skills that help them succeed in the industry, then answer a question or two about each video.

Curiosity:

https://cdn.jwplayer.com/videos/XobROMia-OyROPqrb.mp4

- 1. Laura talks about building her engineering skills by working on an art project with her friends—what technical skills do you feel like you have right now? Are you good at math, or art, or science? Brainstorm some fun summer projects you could do with your friends or family, where you could put your skills to work.
- 2. Laura recommends a few different ways to build your skills, including taking online classes on Khan Academy. What skills do you feel like you need to build? (They could be technical skills or professional skills.) Go to Khan Academy and search for free classes that could help you build those skills.

Professionalism

https://cdn.jwplayer.com/videos/5nuj3ZUQ-OyROPgrb.mp4

- 1. Ron talks about "speaking different languages," but he doesn't mean it literally—what do you think he means?
- 2. Ron talks about how talent doesn't have to look a certain way—what unique aspects of yourself and your identity could you bring to work? How would your unique experiences help you in a microelectronics career?

Intellectual honestly

https://cdn.jwplayer.com/videos/4xnKBwsj-OyROPqrb.mp4

- 1. Jessica's biggest piece of advice for people entering the microelectronics industry is, "Know what you know, and know what you don't, and represent that honestly." Have you ever pretended to know more than you actually did? Did that get you into trouble? Have you ever asked for help on something that you were embarrassed you didn't know how to do? How did that experience play out?
- 2. Why do you think it's so important to be intellectually honest and ask for help at work? What could happen if someone working in the microelectronics industry pretended to know more than they actually knew, or refused to ask for help?

Communication/attention to detail

https://cdn.jwplayer.com/videos/sfOyPZN4-OyROPqrb.mp4

- 1. Katy talks about working on 60 different projects at once; does that sound interesting, or nerve-wracking to you? Are you someone who thrives under pressure, or would you prefer a career that takes a slower pace? Why do you think the microelectronics industry requires so much attention to detail?
- 2. Katy also talks about the importance of internal communication and building trust with your teammates do you feel comfortable communicating with your peers and classmates? Would you feel comfortable telling them "no"? Talk about a time when you've had to use your communication skills to navigate a tricky situation. (In a group project, with a family member, etc.)

TAKE IT FURTHER

Now choose **one** of these recommended skills that you would like to further develop or gain:

- 1. Curiosity
- 2. Professionalism
- 3. Intellectual honesty
- 4. Communication
- 5. Attention to detail

Your chosen skill:

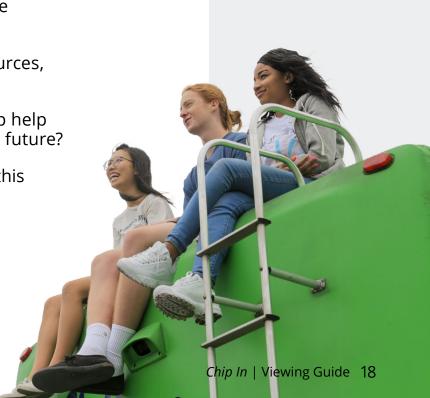
Let's make a SMART goal for how you plan to build that skill!

A SMART goal is a goal that's:

Specific: What exact actions will you take?

Measurable: How will you measure

success?


Achievable: Do you have the resources,

access, and support to do this?

Relevant: How does this small step help you get closer to your goals for the future?

Time-Bound: When will you have this

done?

Here's an example of a SMART goal:

This month, I'll organize a volunteer opportunity in order to help build my skills in leadership.

Here's why this goal is SMART:

Specific: What exact actions will you take?

I'll reach out to my friends and family and recruit them to join me for a volunteer opportunity at the local food bank.

Measurable: How will you measure success?

I'll set a goal to get five people to join me at the volunteer opportunity, and I'll feel successful if I meet that target number.

Achievable: Do you have the resources, access, and support to do this?

This goal is within reach because I can send texts or emails or organize the group of volunteers. I also have a lot of football teammates and family that I can ask to join me, so I think my target goal of five people is achievable.

Relevant: How does this small step help you get closer to your goals for the future?

Reaching out to friends and spearheading this opportunity will help put me into a leadership position, which is a skill I want to grow. I know I want to grow my leadership skills because I'd love to be on the student council next year.

Time-Bound: When will you have this done?

I'll complete this within the next month.

Now it's time for you to make your own SMART goal!

My SWIART Goal
Specific: What exact actions will you take?
Measurable: How will you measure success?
Achievable: Do you have the resources, access, and support to do this? What are they?
Relevant: How does this small step help you get closer to your goals for the future?
Time-Bound: When will you have this done?

ADDITIONAL RESOURCES

Want to find more semiconductor career paths aligned to the skills you already have? Get started with the SEMI Foundation's Skills and Interests Survey:

careers.semi.org/job-match

MODULE FIVE: THE INTERVIEW PROJECT

Meet—and interview—a potential mentor from the microelectronics industry

WATCH

Why is it so important to find a mentor? Let's hear directly from a leader from within the semiconductor industry, as they talk about how valuable a mentorship program was for them when they first entered their career:

https://cdn.jwplayer.com/videos/3Jpl8mlf-OyROPqrb.mp4

REFLECT

- Finding a support system at work is crucial—your peers can help you navigate everything from communicating effectively, to finding the best spot for lunch. Do you have a support system in your life right now? How could you build a similar support system in your future career?
- Even though you're early in your career journey, you can still be a mentor to people who are younger or less experienced than you. So right now, where do you think you have the most knowledge or expertise? (It could be in a certain class, or at a summer job, out on a sports field, etc!) How could you reach out to someone a level below you, and use your knowledge to guide them on their path?

TAKE IT FURTHER

Now it's time to use everything you've learned up until this point—careers that interest you, paths that could be a good fit—to do your own leader interview!

Much like the roadtrippers from "Chip In," you're going to seek out someone working in the semiconductor industry, and do a quick informational interview with them!

If that sounds intimidating, don't worry—we've done hundreds of these interviews, and we'll walk you through it.

All you need to do is: do your research, prepare your pitch, take the plunge, and persevere!

Step 1: Do your research

Do your research to find someone working in a part of the semiconductor industry that seems interesting to you. We recommend finding someone as local as possible, so you can create real connections within your community.

Use the internet to find local companies—you can reach out to them and see if they can connect you with workers, or you can try to find the contact information for the person you'd like to connect with.

If you're not sure where to start, these two sites are good options:

- https://careers.semi.org/regions
- www.linkedin.com

The research step is also a good time to check your instincts — does this person seem like a good match? Do they seem like a trustworthy source of wisdom? Is it someone you could really feel comfortable talking to? If not, it's time to find a new option.

Step 2: Prepare your pitch

Once you've found someone you want to talk to, you need to actually reach out and see if you can schedule a conversation.

To help you out, we've put together a script that you can use to send your interviewee an email or LinkedIn message:

Hi, (interviewee's name). My name is (your name).

I'm trying to figure out what I want to do with my life, and as part of that process, I'm taking a course where I interview someone working in a career that interests me.

I found your name and contact information through (state how you found their information) and was interested in interviewing you because (explain why you'd like to interview them!).

Would you mind if I interviewed you about how you defined your own road in life and got into the microelectronics industry? The interview will be a candid conversation covering your life and career path, and should take about 30-45 minutes.

Would you be available between (insert a window of time)? I was thinking possibly (time and date when you'll be available for the interview), if that works for you.

Thank you so much!

We highly recommend conducting your interview over the phone—it's a great way to build your skills in communication and professionalism. However, if that feels too uncomfortable to you, you can also send your interviewee a list of questions via email.

Step 3: Persevere!

Here's the uncomfortable truth about reaching out to strangers potential mentors—you're probably going to get ghosted, or even hear some "no's."

But that's OK! This isn't just about finding someone cool to talk talk to—it's also about getting over your nerves, putting yourself out there, and building up your confidence.

So if you don't hear back from the person you really want to talk to, don't panic. Try to reach out again (while staying professional), then move on to your next option without getting discouraged.

Step 4: Take the plunge

It's time to do your interview! Here's some of the info you should make sure to cover:

- Who they are
- How they got to where they are today
- What their job entails, and what they like and dislike about it
- Advice and tips for getting started and important skills

The topics you can cover are endless, so this is just a starting place. Follow your curiosity. Each interview is unique and flows in its own way depending on your interests and connection to the person you're talking to.

Here some more questions you may want to ask during your interview:

Basic questions:

- What do you do, and how did you get into that role?
- Did it take you a while to figure out your path or did you know from the start?
- How did you know this career was for you? What do you like and dislike about it?
- Did you hear any discouragement when you were growing up or throughout your career journey? How did you navigate or tune out that Noise?
- What kind of skills does someone need to be successful in your role?
- Do you recommend any first steps or specific education for the role?

Additional questions:

- When you were a high school student, what were some of your interests? How were you thinking about your career and future?
- What was the biggest challenge you faced and how did you overcome it?
- Who is your role model? Did you have any mentors who helped you along the way?
- What does an average day at your job look like?
- What do you love about your job?
- When was the last time you experienced failure? How did you handle it?
- What does success look like to you?
- What do you see for the future of your industry or career?
- What is your "why" or purpose?

Industry-specific questions:

- What do you find most interesting about the semiconductor industry?
- How do you feel about the future of the semiconductor industry? Are there any new innovations that excite you?
- What piece of advice would you give to other young people who are interested in this industry?

REFLECT

Hopefully, your interview with a local microelectronics leader will help you gain a lot of clarity and confidence for your road ahead. Reflect on what you learned, and make sure to take notes before you forget!



ADDITIONAL VIEWING

Still curious about more careers in the semiconductor industry? Watch all of our full interviews with leaders throughout this field:

- Laura Angell, Group Lead for Quality and Continuous Improvement, ASML
- Ron Duncan, Senior Manager of Corporate Applications Engineering, Synopsys
- Rebecca Park, Senior Integration Engineer, Samsung
- Chelsea Dubose, Research Systems Engineer, Tokyo Electron Limited
- A.J. Rivero, Systems Integration Engineer, Torc Robotics
- <u>Laura Marmolejo</u>, <u>Associate Dean of Advanced Manufacturing Programs</u>, <u>Austin Community College</u>
- Billy Rios, Co-Founder, QED Secure Solutions
- Mercedes Hernandez, Staff Development Engineer, Qorvo
- <u>lessica Heerboth, Software Engineer, Nvidia</u>
- Dean Barre, Calibration Technician, Samsung
- Naeiri Cholakian, Director of Product Engineering, Syntiant
- Katy Crist, Director of Marketing and Communications, Tokyo Electron Limited

